Microvan
About
1
Executive Summary
2
Explorative Data Analysis
2.1
Histogram
2.2
Correlation Analysis
2.2.1
Pair-wise Scatter Plot
2.2.2
Correlation Matrix
2.2.3
Normality test
3
Exploratory Factor Analysis
3.1
Eigenvalues
3.1.1
Scree Plot
3.1.2
Cumulative Percentages of Variance
3.1.3
Select Number of Factors using Kaiser Rule
3.2
Extract Principal Factors
3.3
Factor Loadings
3.4
Factor Scores
4
Regression with 5 Factors
5
Regression with 3 Factors
6
Clustering
6.1
Dendrogram
6.2
K-Means
6.3
Interpretation of the results
6.3.1
Heatmap Table
6.3.2
Histogram
7
Demographic
7.1
Merge cluster data with decographic data
7.2
Histogram
7.3
Ridge plot
7.3.1
Count of Subjects in Clusters
7.3.2
Stat
7.3.3
Kruskal–Wallis H test
7.3.4
Factor vs Cluster
References
GitHub
Microvan
References
Reducing Dimensionality
Latent Dimensions of Customer Perceptions
Hierarchical Clustering
Preference Segmentation
Preference Segmentation - Validation