# data for regression
EFA_model2 <- lm(mvliking ~ PA1 + PA3 + PA5,
data=EFA_with_score )
# summary output
s =summary(EFA_model2)
#----------------------------------#
# extract coefficient table
#----------------------------------#
st =s$coefficients %>%
as.data.frame() %>%
tibble::rownames_to_column(., var= modelCol)
# rename all cols
colnames(st) = st_newnames
# add significance stars
st =st %>%
dplyr::mutate(significance = case_when(
!!sym(pvalueCol) < 0.001 ~ " ***",
!!sym(pvalueCol) < 0.01 ~ " **",
!!sym(pvalueCol) < 0.05 ~ " *",
TRUE ~ ""
))
#----------------------------------#
# show as DT table
#----------------------------------#
captionText = paste0("Adjusted R-squared: ", round(s$adj.r.squared, 2))
st %>%
DT::datatable(
caption = captionText ,
rownames = F,
extensions = "Buttons",
options = list(
paging = TRUE,
scrollX = TRUE,
searching = TRUE,
ordering = TRUE,
dom = 'Bfrtip',
buttons = c('copy', 'csv', 'excel', 'pdf'),
pageLength = 5,
lengthMenu = c(3, 5, 10)
)
) %>%
#DT::formatRound(numCols, digits=4) %>%
formatSignif(numCols, digits = 1)